activate() | GClasses::GLayerSoftMax | virtual |
activation() | GClasses::GLayerClassic | inlinevirtual |
activationFunction() | GClasses::GLayerClassic | inline |
backPropError(GNeuralNetLayer *pUpStreamLayer, size_t inputStart=0) | GClasses::GLayerClassic | virtual |
backPropErrorSingleOutput(size_t output, double *pUpStreamError) | GClasses::GLayerClassic | |
baseDomNode(GDom *pDoc) | GClasses::GNeuralNetLayer | protected |
bias() | GClasses::GLayerClassic | inline |
bias() const | GClasses::GLayerClassic | inline |
biasDelta() | GClasses::GLayerClassic | inline |
computeError(const double *pTarget) | GClasses::GLayerClassic | virtual |
computeErrorSingleOutput(double target, size_t output) | GClasses::GLayerClassic | |
contractWeights(double factor, bool contractBiases) | GClasses::GLayerClassic | |
copyBiasToNet() | GClasses::GLayerClassic | virtual |
copySingleNeuronWeights(size_t source, size_t dest) | GClasses::GLayerClassic | virtual |
copyWeights(GNeuralNetLayer *pSource) | GClasses::GLayerClassic | virtual |
countWeights() | GClasses::GLayerClassic | virtual |
deactivateError() | GClasses::GLayerSoftMax | inlinevirtual |
deactivateErrorSingleOutput(size_t output) | GClasses::GLayerClassic | |
deserialize(GDomNode *pNode) | GClasses::GNeuralNetLayer | static |
diminishWeights(double amount, bool regularizeBiases) | GClasses::GLayerClassic | virtual |
dropConnect(GRand &rand, double probOfDrop) | GClasses::GLayerClassic | virtual |
dropOut(GRand &rand, double probOfDrop) | GClasses::GLayerClassic | virtual |
error() | GClasses::GLayerClassic | inlinevirtual |
feedForward(const double *pIn) | GClasses::GNeuralNetLayer | |
feedForwardToOneOutput(const double *pIn, size_t output, bool inputBias) | GClasses::GLayerClassic | |
feedForwardWithInputBias(const double *pIn) | GClasses::GLayerClassic | |
feedIn(const double *pIn, size_t inputStart, size_t inputCount) | GClasses::GLayerClassic | virtual |
GClasses::GNeuralNetLayer::feedIn(GNeuralNetLayer *pUpStreamLayer, size_t inputStart) | GClasses::GNeuralNetLayer | inlinevirtual |
feedThrough(const GMatrix &data) | GClasses::GNeuralNetLayer | |
getWeightsSingleNeuron(size_t outputNode, double *&weights) | GClasses::GLayerClassic | virtual |
GLayerClassic(size_t inputs, size_t outputs, GActivationFunction *pActivationFunction=NULL) | GClasses::GLayerClassic | |
GLayerClassic(GDomNode *pNode) | GClasses::GLayerClassic | |
GLayerSoftMax(size_t inputs, size_t outputs) | GClasses::GLayerSoftMax | |
GLayerSoftMax(GDomNode *pNode) | GClasses::GLayerSoftMax | |
GNeuralNetLayer() | GClasses::GNeuralNetLayer | inline |
inputs() | GClasses::GLayerClassic | inlinevirtual |
m_bias | GClasses::GLayerClassic | protected |
m_delta | GClasses::GLayerClassic | protected |
m_pActivationFunction | GClasses::GLayerClassic | protected |
m_weights | GClasses::GLayerClassic | protected |
maxNorm(double max) | GClasses::GLayerClassic | virtual |
net() | GClasses::GLayerClassic | inline |
outputs() | GClasses::GLayerClassic | inlinevirtual |
perturbWeights(GRand &rand, double deviation, size_t start=0, size_t count=INVALID_INDEX) | GClasses::GLayerClassic | virtual |
regularizeWeights(double factor, double power) | GClasses::GLayerClassic | |
renormalizeInput(size_t input, double oldMin, double oldMax, double newMin=0.0, double newMax=1.0) | GClasses::GLayerClassic | virtual |
resetWeights(GRand &rand) | GClasses::GLayerClassic | virtual |
resize(size_t inputs, size_t outputs, GRand *pRand=NULL, double deviation=0.03) | GClasses::GLayerClassic | virtual |
scaleUnitIncomingWeights(size_t unit, double scalar) | GClasses::GLayerClassic | virtual |
scaleUnitOutgoingWeights(size_t input, double scalar) | GClasses::GLayerClassic | virtual |
scaleWeights(double factor, bool scaleBiases) | GClasses::GLayerClassic | virtual |
serialize(GDom *pDoc) | GClasses::GLayerClassic | virtual |
setWeightsSingleNeuron(size_t outputNode, const double *weights) | GClasses::GLayerClassic | virtual |
setWeightsToIdentity(size_t start=0, size_t count=(size_t)-1) | GClasses::GLayerClassic | |
slack() | GClasses::GLayerClassic | inline |
transformWeights(GMatrix &transform, const double *pOffset) | GClasses::GLayerClassic | |
type() | GClasses::GLayerSoftMax | inlinevirtual |
unitIncomingWeightsL1Norm(size_t unit) | GClasses::GLayerClassic | virtual |
unitIncomingWeightsL2Norm(size_t unit) | GClasses::GLayerClassic | virtual |
unitOutgoingWeightsL1Norm(size_t input) | GClasses::GLayerClassic | virtual |
unitOutgoingWeightsL2Norm(size_t input) | GClasses::GLayerClassic | virtual |
updateBias(double learningRate, double momentum) | GClasses::GLayerClassic | virtual |
updateWeights(const double *pUpStreamActivation, size_t inputStart, size_t inputCount, double learningRate, double momentum) | GClasses::GLayerClassic | virtual |
GClasses::GNeuralNetLayer::updateWeights(GNeuralNetLayer *pUpStreamLayer, size_t inputStart, double learningRate, double momentum) | GClasses::GNeuralNetLayer | inlinevirtual |
updateWeightsAndRestoreDroppedOnes(const double *pUpStreamActivation, size_t inputStart, size_t inputCount, double learningRate, double momentum) | GClasses::GLayerClassic | virtual |
GClasses::GNeuralNetLayer::updateWeightsAndRestoreDroppedOnes(GNeuralNetLayer *pUpStreamLayer, size_t inputStart, double learningRate, double momentum) | GClasses::GNeuralNetLayer | inlinevirtual |
updateWeightsSingleNeuron(size_t outputNode, const double *pUpStreamActivation, double learningRate, double momentum) | GClasses::GLayerClassic | |
usesGPU() | GClasses::GNeuralNetLayer | inlinevirtual |
vectorToWeights(const double *pVector) | GClasses::GLayerClassic | virtual |
weights() | GClasses::GLayerClassic | inline |
weightsToVector(double *pOutVector) | GClasses::GLayerClassic | virtual |
~GLayerClassic() | GClasses::GLayerClassic | |
~GLayerSoftMax() | GClasses::GLayerSoftMax | inlinevirtual |
~GNeuralNetLayer() | GClasses::GNeuralNetLayer | inlinevirtual |