GClasses
|
This is the complete list of members for GClasses::GNeuralNet, including all inherited members.
addLayer(GNeuralNetLayer *pLayer, size_t position=INVALID_INDEX) | GClasses::GNeuralNet | |
align(const GNeuralNet &that) | GClasses::GNeuralNet | |
autoTune(GMatrix &features, GMatrix &labels) | GClasses::GNeuralNet | |
backpropagate(const double *pTarget, size_t startLayer=INVALID_INDEX) | GClasses::GNeuralNet | |
backpropagateSingleOutput(size_t outputNode, double target, size_t startLayer=INVALID_INDEX) | GClasses::GNeuralNet | |
baseDomNode(GDom *pDoc, const char *szClassName) const | GClasses::GSupervisedLearner | protected |
basicTest(double minAccuracy1, double minAccuracy2, double deviation=1e-6, bool printAccuracy=false, double warnRange=0.035) | GClasses::GSupervisedLearner | |
beginIncrementalLearning(const GRelation &featureRel, const GRelation &labelRel) | GClasses::GIncrementalLearner | |
beginIncrementalLearningInner(const GRelation &featureRel, const GRelation &labelRel) | GClasses::GNeuralNet | protectedvirtual |
bleedWeightsL1(double beta) | GClasses::GNeuralNet | |
bleedWeightsL2(double beta) | GClasses::GNeuralNet | |
canGeneralize() | GClasses::GSupervisedLearner | inlinevirtual |
canImplicitlyHandleContinuousFeatures() | GClasses::GTransducer | inlinevirtual |
canImplicitlyHandleContinuousLabels() | GClasses::GTransducer | inlinevirtual |
canImplicitlyHandleMissingFeatures() | GClasses::GNeuralNet | inlinevirtual |
canImplicitlyHandleNominalFeatures() | GClasses::GNeuralNet | inlinevirtual |
canImplicitlyHandleNominalLabels() | GClasses::GNeuralNet | inlinevirtual |
canTrainIncrementally() | GClasses::GIncrementalLearner | inlinevirtual |
clear() | GClasses::GNeuralNet | virtual |
compressFeatures(GMatrix &features) | GClasses::GNeuralNet | |
confusion(GMatrix &features, GMatrix &labels, std::vector< GMatrix * > &stats) | GClasses::GSupervisedLearner | |
containIntrinsics(GMatrix &intrinsics) | GClasses::GNeuralNet | |
contractWeights(double factor, bool contractBiases) | GClasses::GNeuralNet | |
copyPrediction(double *pOut) | GClasses::GNeuralNet | |
copyStructure(GNeuralNet *pOther) | GClasses::GNeuralNet | |
copyWeights(GNeuralNet *pOther) | GClasses::GNeuralNet | |
countWeights() const | GClasses::GNeuralNet | |
countWeights(size_t layer) const | GClasses::GNeuralNet | |
crossValidate(const GMatrix &features, const GMatrix &labels, size_t nFolds, RepValidateCallback pCB=NULL, size_t nRep=0, void *pThis=NULL) | GClasses::GTransducer | |
descendGradient(const double *pFeatures, double learningRate, double momentum) | GClasses::GNeuralNet | |
descendGradientSingleOutput(size_t outputNeuron, const double *pFeatures, double learningRate, double momentum) | GClasses::GNeuralNet | |
diminishWeights(double amount, bool regularizeBiases=true, size_t startLayer=0, size_t layerCount=INVALID_INDEX) | GClasses::GNeuralNet | |
forwardProp(const double *pInputs, size_t maxLayers=INVALID_INDEX) | GClasses::GNeuralNet | |
forwardPropSingleOutput(const double *pInputs, size_t output) | GClasses::GNeuralNet | |
fourier(GMatrix &series, double period=1.0) | GClasses::GNeuralNet | static |
GIncrementalLearner() | GClasses::GIncrementalLearner | inline |
GIncrementalLearner(GDomNode *pNode, GLearnerLoader &ll) | GClasses::GIncrementalLearner | inline |
GNeuralNet() | GClasses::GNeuralNet | |
GNeuralNet(GDomNode *pNode, GLearnerLoader &ll) | GClasses::GNeuralNet | |
gradientOfInputs(double *pOutGradient) | GClasses::GNeuralNet | |
gradientOfInputsSingleOutput(size_t outputNeuron, double *pOutGradient) | GClasses::GNeuralNet | |
GSupervisedLearner() | GClasses::GSupervisedLearner | |
GSupervisedLearner(GDomNode *pNode, GLearnerLoader &ll) | GClasses::GSupervisedLearner | |
GTransducer() | GClasses::GTransducer | |
GTransducer(const GTransducer &that) | GClasses::GTransducer | inline |
improvementThresh() | GClasses::GNeuralNet | inline |
internalTraininGMatrix() | GClasses::GNeuralNet | |
internalValidationData() | GClasses::GNeuralNet | |
invertNode(size_t layer, size_t node) | GClasses::GNeuralNet | |
isFilter() | GClasses::GIncrementalLearner | inlinevirtual |
layer(size_t n) | GClasses::GNeuralNet | inline |
layerCount() const | GClasses::GNeuralNet | inline |
learningRate() const | GClasses::GNeuralNet | inline |
m_epochsPerValidationCheck | GClasses::GNeuralNet | protected |
m_layers | GClasses::GNeuralNet | protected |
m_learningRate | GClasses::GNeuralNet | protected |
m_minImprovement | GClasses::GNeuralNet | protected |
m_momentum | GClasses::GNeuralNet | protected |
m_pRelFeatures | GClasses::GSupervisedLearner | protected |
m_pRelLabels | GClasses::GSupervisedLearner | protected |
m_rand | GClasses::GTransducer | protected |
m_useInputBias | GClasses::GNeuralNet | protected |
m_validationPortion | GClasses::GNeuralNet | protected |
maxNorm(double max) | GClasses::GNeuralNet | virtual |
momentum() const | GClasses::GNeuralNet | inline |
operator=(const GTransducer &other) | GClasses::GTransducer | inline |
outputLayer() | GClasses::GNeuralNet | inline |
perturbAllWeights(double deviation) | GClasses::GNeuralNet | |
precisionRecall(double *pOutPrecision, size_t nPrecisionSize, GMatrix &features, GMatrix &labels, size_t label, size_t nReps) | GClasses::GSupervisedLearner | |
precisionRecallContinuous(GPrediction *pOutput, double *pFunc, GMatrix &trainFeatures, GMatrix &trainLabels, GMatrix &testFeatures, GMatrix &testLabels, size_t label) | GClasses::GSupervisedLearner | protected |
precisionRecallNominal(GPrediction *pOutput, double *pFunc, GMatrix &trainFeatures, GMatrix &trainLabels, GMatrix &testFeatures, GMatrix &testLabels, size_t label, int value) | GClasses::GSupervisedLearner | protected |
predict(const double *pIn, double *pOut) | GClasses::GNeuralNet | virtual |
predictDistribution(const double *pIn, GPrediction *pOut) | GClasses::GNeuralNet | virtual |
pretrainWithAutoencoders(const GMatrix &features, size_t maxLayers=INVALID_INDEX) | GClasses::GNeuralNet | |
printWeights(std::ostream &stream) | GClasses::GNeuralNet | |
rand() | GClasses::GTransducer | inline |
releaseLayer(size_t index) | GClasses::GNeuralNet | |
relFeatures() | GClasses::GSupervisedLearner | |
relLabels() | GClasses::GSupervisedLearner | |
repValidate(const GMatrix &features, const GMatrix &labels, size_t reps, size_t nFolds, RepValidateCallback pCB=NULL, void *pThis=NULL) | GClasses::GTransducer | |
scaleWeights(double factor, bool scaleBiases=true, size_t startLayer=0, size_t layerCount=INVALID_INDEX) | GClasses::GNeuralNet | |
scaleWeightsSingleOutput(size_t output, double lambda) | GClasses::GNeuralNet | |
serialize(GDom *pDoc) const | GClasses::GNeuralNet | virtual |
setImprovementThresh(double d) | GClasses::GNeuralNet | inline |
setLearningRate(double d) | GClasses::GNeuralNet | inline |
setMomentum(double d) | GClasses::GNeuralNet | inline |
setupFilters(const GMatrix &features, const GMatrix &labels) | GClasses::GSupervisedLearner | protected |
setUseInputBias(bool b) | GClasses::GNeuralNet | inline |
setValidationPortion(double d) | GClasses::GNeuralNet | inline |
setWeights(const double *pWeights) | GClasses::GNeuralNet | |
setWeights(const double *pWeights, size_t layer) | GClasses::GNeuralNet | |
setWindowSize(size_t n) | GClasses::GNeuralNet | inline |
sumSquaredError(const GMatrix &features, const GMatrix &labels) | GClasses::GSupervisedLearner | |
sumSquaredPredictionError(const double *pTarget) | GClasses::GNeuralNet | |
supportedFeatureRange(double *pOutMin, double *pOutMax) | GClasses::GNeuralNet | virtual |
supportedLabelRange(double *pOutMin, double *pOutMax) | GClasses::GNeuralNet | virtual |
swapNodes(size_t layer, size_t a, size_t b) | GClasses::GNeuralNet | |
test() | GClasses::GNeuralNet | static |
train(const GMatrix &features, const GMatrix &labels) | GClasses::GSupervisedLearner | |
trainAndTest(const GMatrix &trainFeatures, const GMatrix &trainLabels, const GMatrix &testFeatures, const GMatrix &testLabels) | GClasses::GSupervisedLearner | virtual |
trainIncremental(const double *pIn, const double *pOut) | GClasses::GNeuralNet | virtual |
trainIncrementalWithDropConnect(const double *pIn, const double *pOut, double probOfDrop) | GClasses::GNeuralNet | |
trainIncrementalWithDropout(const double *pIn, const double *pOut, double probOfDrop) | GClasses::GNeuralNet | |
trainInner(const GMatrix &features, const GMatrix &labels) | GClasses::GNeuralNet | protectedvirtual |
trainSparse(GSparseMatrix &features, GMatrix &labels) | GClasses::GNeuralNet | virtual |
trainWithValidation(const GMatrix &trainFeatures, const GMatrix &trainLabels, const GMatrix &validateFeatures, const GMatrix &validateLabels) | GClasses::GNeuralNet | |
transduce(const GMatrix &features1, const GMatrix &labels1, const GMatrix &features2) | GClasses::GTransducer | |
transduceInner(const GMatrix &features1, const GMatrix &labels1, const GMatrix &features2) | GClasses::GSupervisedLearner | protectedvirtual |
transductiveConfusionMatrix(const GMatrix &trainFeatures, const GMatrix &trainLabels, const GMatrix &testFeatures, const GMatrix &testLabels, std::vector< GMatrix * > &stats) | GClasses::GTransducer | |
useInputBias() const | GClasses::GNeuralNet | inline |
validationSquaredError(const GMatrix &features, const GMatrix &labels) | GClasses::GNeuralNet | protected |
weights(double *pOutWeights) const | GClasses::GNeuralNet | |
weights(double *pOutWeights, size_t layer) const | GClasses::GNeuralNet | |
windowSize() | GClasses::GNeuralNet | inline |
~GIncrementalLearner() | GClasses::GIncrementalLearner | inlinevirtual |
~GNeuralNet() | GClasses::GNeuralNet | virtual |
~GSupervisedLearner() | GClasses::GSupervisedLearner | virtual |
~GTransducer() | GClasses::GTransducer | virtual |