GClasses
GClasses::GNeuralNet Member List

This is the complete list of members for GClasses::GNeuralNet, including all inherited members.

addLayer(GNeuralNetLayer *pLayer, size_t position=INVALID_INDEX)GClasses::GNeuralNet
align(const GNeuralNet &that)GClasses::GNeuralNet
autoTune(GMatrix &features, GMatrix &labels)GClasses::GNeuralNet
backpropagate(const double *pTarget, size_t startLayer=INVALID_INDEX)GClasses::GNeuralNet
backpropagateSingleOutput(size_t outputNode, double target, size_t startLayer=INVALID_INDEX)GClasses::GNeuralNet
baseDomNode(GDom *pDoc, const char *szClassName) const GClasses::GSupervisedLearnerprotected
basicTest(double minAccuracy1, double minAccuracy2, double deviation=1e-6, bool printAccuracy=false, double warnRange=0.035)GClasses::GSupervisedLearner
beginIncrementalLearning(const GRelation &featureRel, const GRelation &labelRel)GClasses::GIncrementalLearner
beginIncrementalLearningInner(const GRelation &featureRel, const GRelation &labelRel)GClasses::GNeuralNetprotectedvirtual
bleedWeightsL1(double beta)GClasses::GNeuralNet
bleedWeightsL2(double beta)GClasses::GNeuralNet
canGeneralize()GClasses::GSupervisedLearnerinlinevirtual
canImplicitlyHandleContinuousFeatures()GClasses::GTransducerinlinevirtual
canImplicitlyHandleContinuousLabels()GClasses::GTransducerinlinevirtual
canImplicitlyHandleMissingFeatures()GClasses::GNeuralNetinlinevirtual
canImplicitlyHandleNominalFeatures()GClasses::GNeuralNetinlinevirtual
canImplicitlyHandleNominalLabels()GClasses::GNeuralNetinlinevirtual
canTrainIncrementally()GClasses::GIncrementalLearnerinlinevirtual
clear()GClasses::GNeuralNetvirtual
compressFeatures(GMatrix &features)GClasses::GNeuralNet
confusion(GMatrix &features, GMatrix &labels, std::vector< GMatrix * > &stats)GClasses::GSupervisedLearner
containIntrinsics(GMatrix &intrinsics)GClasses::GNeuralNet
contractWeights(double factor, bool contractBiases)GClasses::GNeuralNet
copyPrediction(double *pOut)GClasses::GNeuralNet
copyStructure(GNeuralNet *pOther)GClasses::GNeuralNet
copyWeights(GNeuralNet *pOther)GClasses::GNeuralNet
countWeights() const GClasses::GNeuralNet
countWeights(size_t layer) const GClasses::GNeuralNet
crossValidate(const GMatrix &features, const GMatrix &labels, size_t nFolds, RepValidateCallback pCB=NULL, size_t nRep=0, void *pThis=NULL)GClasses::GTransducer
descendGradient(const double *pFeatures, double learningRate, double momentum)GClasses::GNeuralNet
descendGradientSingleOutput(size_t outputNeuron, const double *pFeatures, double learningRate, double momentum)GClasses::GNeuralNet
diminishWeights(double amount, bool regularizeBiases=true, size_t startLayer=0, size_t layerCount=INVALID_INDEX)GClasses::GNeuralNet
forwardProp(const double *pInputs, size_t maxLayers=INVALID_INDEX)GClasses::GNeuralNet
forwardPropSingleOutput(const double *pInputs, size_t output)GClasses::GNeuralNet
fourier(GMatrix &series, double period=1.0)GClasses::GNeuralNetstatic
GIncrementalLearner()GClasses::GIncrementalLearnerinline
GIncrementalLearner(GDomNode *pNode, GLearnerLoader &ll)GClasses::GIncrementalLearnerinline
GNeuralNet()GClasses::GNeuralNet
GNeuralNet(GDomNode *pNode, GLearnerLoader &ll)GClasses::GNeuralNet
gradientOfInputs(double *pOutGradient)GClasses::GNeuralNet
gradientOfInputsSingleOutput(size_t outputNeuron, double *pOutGradient)GClasses::GNeuralNet
GSupervisedLearner()GClasses::GSupervisedLearner
GSupervisedLearner(GDomNode *pNode, GLearnerLoader &ll)GClasses::GSupervisedLearner
GTransducer()GClasses::GTransducer
GTransducer(const GTransducer &that)GClasses::GTransducerinline
improvementThresh()GClasses::GNeuralNetinline
internalTraininGMatrix()GClasses::GNeuralNet
internalValidationData()GClasses::GNeuralNet
invertNode(size_t layer, size_t node)GClasses::GNeuralNet
isFilter()GClasses::GIncrementalLearnerinlinevirtual
layer(size_t n)GClasses::GNeuralNetinline
layerCount() const GClasses::GNeuralNetinline
learningRate() const GClasses::GNeuralNetinline
m_epochsPerValidationCheckGClasses::GNeuralNetprotected
m_layersGClasses::GNeuralNetprotected
m_learningRateGClasses::GNeuralNetprotected
m_minImprovementGClasses::GNeuralNetprotected
m_momentumGClasses::GNeuralNetprotected
m_pRelFeaturesGClasses::GSupervisedLearnerprotected
m_pRelLabelsGClasses::GSupervisedLearnerprotected
m_randGClasses::GTransducerprotected
m_useInputBiasGClasses::GNeuralNetprotected
m_validationPortionGClasses::GNeuralNetprotected
maxNorm(double max)GClasses::GNeuralNetvirtual
momentum() const GClasses::GNeuralNetinline
operator=(const GTransducer &other)GClasses::GTransducerinline
outputLayer()GClasses::GNeuralNetinline
perturbAllWeights(double deviation)GClasses::GNeuralNet
precisionRecall(double *pOutPrecision, size_t nPrecisionSize, GMatrix &features, GMatrix &labels, size_t label, size_t nReps)GClasses::GSupervisedLearner
precisionRecallContinuous(GPrediction *pOutput, double *pFunc, GMatrix &trainFeatures, GMatrix &trainLabels, GMatrix &testFeatures, GMatrix &testLabels, size_t label)GClasses::GSupervisedLearnerprotected
precisionRecallNominal(GPrediction *pOutput, double *pFunc, GMatrix &trainFeatures, GMatrix &trainLabels, GMatrix &testFeatures, GMatrix &testLabels, size_t label, int value)GClasses::GSupervisedLearnerprotected
predict(const double *pIn, double *pOut)GClasses::GNeuralNetvirtual
predictDistribution(const double *pIn, GPrediction *pOut)GClasses::GNeuralNetvirtual
pretrainWithAutoencoders(const GMatrix &features, size_t maxLayers=INVALID_INDEX)GClasses::GNeuralNet
printWeights(std::ostream &stream)GClasses::GNeuralNet
rand()GClasses::GTransducerinline
releaseLayer(size_t index)GClasses::GNeuralNet
relFeatures()GClasses::GSupervisedLearner
relLabels()GClasses::GSupervisedLearner
repValidate(const GMatrix &features, const GMatrix &labels, size_t reps, size_t nFolds, RepValidateCallback pCB=NULL, void *pThis=NULL)GClasses::GTransducer
scaleWeights(double factor, bool scaleBiases=true, size_t startLayer=0, size_t layerCount=INVALID_INDEX)GClasses::GNeuralNet
scaleWeightsSingleOutput(size_t output, double lambda)GClasses::GNeuralNet
serialize(GDom *pDoc) const GClasses::GNeuralNetvirtual
setImprovementThresh(double d)GClasses::GNeuralNetinline
setLearningRate(double d)GClasses::GNeuralNetinline
setMomentum(double d)GClasses::GNeuralNetinline
setupFilters(const GMatrix &features, const GMatrix &labels)GClasses::GSupervisedLearnerprotected
setUseInputBias(bool b)GClasses::GNeuralNetinline
setValidationPortion(double d)GClasses::GNeuralNetinline
setWeights(const double *pWeights)GClasses::GNeuralNet
setWeights(const double *pWeights, size_t layer)GClasses::GNeuralNet
setWindowSize(size_t n)GClasses::GNeuralNetinline
sumSquaredError(const GMatrix &features, const GMatrix &labels)GClasses::GSupervisedLearner
sumSquaredPredictionError(const double *pTarget)GClasses::GNeuralNet
supportedFeatureRange(double *pOutMin, double *pOutMax)GClasses::GNeuralNetvirtual
supportedLabelRange(double *pOutMin, double *pOutMax)GClasses::GNeuralNetvirtual
swapNodes(size_t layer, size_t a, size_t b)GClasses::GNeuralNet
test()GClasses::GNeuralNetstatic
train(const GMatrix &features, const GMatrix &labels)GClasses::GSupervisedLearner
trainAndTest(const GMatrix &trainFeatures, const GMatrix &trainLabels, const GMatrix &testFeatures, const GMatrix &testLabels)GClasses::GSupervisedLearnervirtual
trainIncremental(const double *pIn, const double *pOut)GClasses::GNeuralNetvirtual
trainIncrementalWithDropConnect(const double *pIn, const double *pOut, double probOfDrop)GClasses::GNeuralNet
trainIncrementalWithDropout(const double *pIn, const double *pOut, double probOfDrop)GClasses::GNeuralNet
trainInner(const GMatrix &features, const GMatrix &labels)GClasses::GNeuralNetprotectedvirtual
trainSparse(GSparseMatrix &features, GMatrix &labels)GClasses::GNeuralNetvirtual
trainWithValidation(const GMatrix &trainFeatures, const GMatrix &trainLabels, const GMatrix &validateFeatures, const GMatrix &validateLabels)GClasses::GNeuralNet
transduce(const GMatrix &features1, const GMatrix &labels1, const GMatrix &features2)GClasses::GTransducer
transduceInner(const GMatrix &features1, const GMatrix &labels1, const GMatrix &features2)GClasses::GSupervisedLearnerprotectedvirtual
transductiveConfusionMatrix(const GMatrix &trainFeatures, const GMatrix &trainLabels, const GMatrix &testFeatures, const GMatrix &testLabels, std::vector< GMatrix * > &stats)GClasses::GTransducer
useInputBias() const GClasses::GNeuralNetinline
validationSquaredError(const GMatrix &features, const GMatrix &labels)GClasses::GNeuralNetprotected
weights(double *pOutWeights) const GClasses::GNeuralNet
weights(double *pOutWeights, size_t layer) const GClasses::GNeuralNet
windowSize()GClasses::GNeuralNetinline
~GIncrementalLearner()GClasses::GIncrementalLearnerinlinevirtual
~GNeuralNet()GClasses::GNeuralNetvirtual
~GSupervisedLearner()GClasses::GSupervisedLearnervirtual
~GTransducer()GClasses::GTransducervirtual