activate() | GClasses::GLayerConvolutional2D | virtual |
activation() | GClasses::GLayerConvolutional2D | inlinevirtual |
backPropError(GNeuralNetLayer *pUpStreamLayer, size_t inputStart=0) | GClasses::GLayerConvolutional2D | virtual |
baseDomNode(GDom *pDoc) | GClasses::GNeuralNetLayer | protected |
bias() | GClasses::GLayerConvolutional2D | inline |
biasDelta() | GClasses::GLayerConvolutional2D | inline |
computeError(const double *pTarget) | GClasses::GLayerConvolutional2D | virtual |
copyBiasToNet() | GClasses::GLayerConvolutional2D | virtual |
copySingleNeuronWeights(size_t source, size_t dest) | GClasses::GNeuralNetLayer | inlinevirtual |
copyWeights(GNeuralNetLayer *pSource) | GClasses::GLayerConvolutional2D | virtual |
countWeights() | GClasses::GLayerConvolutional2D | virtual |
deactivateError() | GClasses::GLayerConvolutional2D | virtual |
deserialize(GDomNode *pNode) | GClasses::GNeuralNetLayer | static |
diminishWeights(double amount, bool regularizeBiases) | GClasses::GLayerConvolutional2D | virtual |
dropConnect(GRand &rand, double probOfDrop) | GClasses::GLayerConvolutional2D | virtual |
dropOut(GRand &rand, double probOfDrop) | GClasses::GLayerConvolutional2D | virtual |
error() | GClasses::GLayerConvolutional2D | inlinevirtual |
feedForward(const double *pIn) | GClasses::GNeuralNetLayer | |
feedIn(const double *pIn, size_t inputStart, size_t inputCount) | GClasses::GLayerConvolutional2D | virtual |
GClasses::GNeuralNetLayer::feedIn(GNeuralNetLayer *pUpStreamLayer, size_t inputStart) | GClasses::GNeuralNetLayer | inlinevirtual |
feedThrough(const GMatrix &data) | GClasses::GNeuralNetLayer | |
getWeightsSingleNeuron(size_t outputNode, double *&weights) | GClasses::GNeuralNetLayer | inlinevirtual |
GLayerConvolutional2D(size_t inputCols, size_t inputRows, size_t inputChannels, size_t kernelSize, size_t kernelsPerChannel, GActivationFunction *pActivationFunction=NULL) | GClasses::GLayerConvolutional2D | |
GLayerConvolutional2D(GDomNode *pNode) | GClasses::GLayerConvolutional2D | |
GNeuralNetLayer() | GClasses::GNeuralNetLayer | inline |
inputs() | GClasses::GLayerConvolutional2D | inlinevirtual |
kernels() | GClasses::GLayerConvolutional2D | inline |
m_activation | GClasses::GLayerConvolutional2D | protected |
m_bias | GClasses::GLayerConvolutional2D | protected |
m_delta | GClasses::GLayerConvolutional2D | protected |
m_inputChannels | GClasses::GLayerConvolutional2D | protected |
m_inputCols | GClasses::GLayerConvolutional2D | protected |
m_inputRows | GClasses::GLayerConvolutional2D | protected |
m_kernelCount | GClasses::GLayerConvolutional2D | protected |
m_kernels | GClasses::GLayerConvolutional2D | protected |
m_kernelsPerChannel | GClasses::GLayerConvolutional2D | protected |
m_outputCols | GClasses::GLayerConvolutional2D | protected |
m_outputRows | GClasses::GLayerConvolutional2D | protected |
m_pActivationFunction | GClasses::GLayerConvolutional2D | protected |
maxNorm(double max) | GClasses::GLayerConvolutional2D | virtual |
net() | GClasses::GLayerConvolutional2D | inline |
outputs() | GClasses::GLayerConvolutional2D | inlinevirtual |
perturbWeights(GRand &rand, double deviation, size_t start, size_t count) | GClasses::GLayerConvolutional2D | virtual |
renormalizeInput(size_t input, double oldMin, double oldMax, double newMin=0.0, double newMax=1.0) | GClasses::GLayerConvolutional2D | virtual |
resetWeights(GRand &rand) | GClasses::GLayerConvolutional2D | virtual |
resize(size_t inputs, size_t outputs, GRand *pRand=NULL, double deviation=0.03) | GClasses::GLayerConvolutional2D | virtual |
scaleUnitIncomingWeights(size_t unit, double scalar) | GClasses::GLayerConvolutional2D | virtual |
scaleUnitOutgoingWeights(size_t input, double scalar) | GClasses::GLayerConvolutional2D | virtual |
scaleWeights(double factor, bool scaleBiases) | GClasses::GLayerConvolutional2D | virtual |
serialize(GDom *pDoc) | GClasses::GLayerConvolutional2D | virtual |
setWeightsSingleNeuron(size_t outputNode, const double *weights) | GClasses::GNeuralNetLayer | inlinevirtual |
type() | GClasses::GLayerConvolutional2D | inlinevirtual |
unitIncomingWeightsL1Norm(size_t unit) | GClasses::GLayerConvolutional2D | virtual |
unitIncomingWeightsL2Norm(size_t unit) | GClasses::GLayerConvolutional2D | virtual |
unitOutgoingWeightsL1Norm(size_t input) | GClasses::GLayerConvolutional2D | virtual |
unitOutgoingWeightsL2Norm(size_t input) | GClasses::GLayerConvolutional2D | virtual |
updateBias(double learningRate, double momentum) | GClasses::GLayerConvolutional2D | virtual |
updateWeights(const double *pUpStreamActivation, size_t inputStart, size_t inputCount, double learningRate, double momentum) | GClasses::GLayerConvolutional2D | virtual |
GClasses::GNeuralNetLayer::updateWeights(GNeuralNetLayer *pUpStreamLayer, size_t inputStart, double learningRate, double momentum) | GClasses::GNeuralNetLayer | inlinevirtual |
updateWeightsAndRestoreDroppedOnes(const double *pUpStreamActivation, size_t inputStart, size_t inputCount, double learningRate, double momentum) | GClasses::GLayerConvolutional2D | virtual |
GClasses::GNeuralNetLayer::updateWeightsAndRestoreDroppedOnes(GNeuralNetLayer *pUpStreamLayer, size_t inputStart, double learningRate, double momentum) | GClasses::GNeuralNetLayer | inlinevirtual |
usesGPU() | GClasses::GNeuralNetLayer | inlinevirtual |
vectorToWeights(const double *pVector) | GClasses::GLayerConvolutional2D | virtual |
weightsToVector(double *pOutVector) | GClasses::GLayerConvolutional2D | virtual |
~GLayerConvolutional2D() | GClasses::GLayerConvolutional2D | virtual |
~GNeuralNetLayer() | GClasses::GNeuralNetLayer | inlinevirtual |